

 1

An alternative formulation of the FE method for
arbitrary discrete/continuous models

Wlodek Abramowicz, Impact Design Europe

Ul. 3 MAJA 18 •
MICHALOWICE 05-816 • POLAND

E-mail: wa@impactdesign.pl

Summary
The paper describes new Object Oriented formulation of the FE algorithm that
encompasses traditional FE elements, Super Elements, experimental data, codes of
practice and rigid body mechanics in a single calculation environment. The new
formulation is implemented in software for dynamic crash simulation of an arbitrary
3D frame structure discretized into Superbeam Elements and subjected to large
dynamic crash loadings. The paper presents basics of the general algorithm and
element formulation. The theoretical part is followed by two examples of application
of the new code to real word structures.

Introduction
The crashworthiness community entered the third millennium with well-established
tools for numerical simulation of crash events at various levels of modeling precision.
The fully-grown FE codes for dynamic crash simulation provide for an excellent tool
for detailed dynamic analysis of crash events. On the other hand simulation
techniques based on analytical and semi-analytical solutions, macro element approach
as well as on detailed experimental databases provide for a rapid simulation support at
early design/analysis level when building of a detailed FE mesh is not feasible. An
apparent advantage of the latter tools is the easy of modeling and negligible
processing time; the major drawback is the limited area of application and dedicated
modeling, processing and post processing techniques.
The major problem of existing simulation environments is the lack of compatibility
between simulations tools used at various levels of the design/calculation loop. The
difficulty of combining various discretization/solution techniques into single software
is not only a technical problem of different input/output organization. The primary
problem lies deep in the generic formulation of the FE and semi-analytical or macro
element methods. The calculation algorithms of these methods are frequently
inherently different. Therefore, it is very difficult, if not impossible, to implement
both approaches in a traditional FE program based almost exclusively on the matrix
technique.
This paper presents an alternative Object Oriented Formulation (OOF) for arbitrary
discrete/continuous models of mechanical systems. The OOF strictly separates the
level of an individual element from the global dynamic equilibrium problem of the
entire model (resulting from the space semi-discretization) and time integration
schemes (time semi-discretization). The OOF makes it possible to implement various
‘elements’ in a single computer code (e.g. macro elements, traditional FE elements,
rigid bodies, code of practice, experimental characteristics etc.).

 2

Preliminaries
Most of consistent formulations of the FE methods in nonlinear structural mechanics
are based on the principle of virtual work (or virtual velocities)1 [1]-[4].

Eq. 1 0),(int =+−≡ kinext WWWuuW δδδδδ ,

where arguments uanduδ correspond, respectively, to the kinematically admissible
test and trial functions. The consistent procedure of FE space semi-discretization,
based on Eq.1, reduces the problem of dynamic equilibrium of continuum to the
problem of dynamic equilibrium of a discrete system, which is then solved by using
one of the numerous time-stepping routines. At this level of generality momentum
equations, resulting from Eq. 1, can be categorized into two groups that differ in the
representation of internal nodal forces and are referred to as ‘stiffness’ and ‘force’
method, respectively2.

Eq. 2 extfuKuM =+&& (a)

 intffuM ext −=&& (b)

In Eq. 2 uandKM , denote, respectively, the mass and stiffness matrices, while u is
the displacement vector. The internal and external nodal forces are denoted by

extin fandf , respectively. For the sake of conciseness dumping forces are not listed
explicitly in neither of momentum equations. In Eq. 2a the internal forces vary
linearly with the displacement vector at each discrete time interval and/or iteration
step. Likewise the stiffness matrix K (in general non linear) is kept constant at each
iteration step.

Figure 1 Illustrative example: three-dimensional rod, initially along x axis, is fixed at the start node

and subjected to kinematic loading at the end node. The space trajectory of the loaded end
corresponds to finite straining and finite rotations of the rod.

The formulation involving explicit definition of the stiffness matrix was a milestone
in the development of modern FE codes for structural mechanics problems. Virtually
all quasi-static and dynamic formulations of FEM for small and moderate
deformations are based on this approach. The ‘stiffness method’, however, is not
efficient in the simulation of crash events, which involve both finite deformations as
well as finite rotations of contributing elements. The major problem lies in the
complexity, ill conditioning and singularities of the stiffness matrix that are ever

1 The principle of stationary potential energy is a special case of the principle of virtual work applicable
to potential systems.
2 The following nomenclature is adopted: tag

indexr the superscript is a ‘tag’ that identifies property of a
given symbol (e.g. external, internal). The superscript stands for an index, which identifies
independent variable.

 3

present in the case of large rotations and strain-softening response of contributing
elements, [6].
The complexity of the stiffness matrix method is illustrated on the elementary
example of a simple elastic rod element pin-ended at one node and subjected to
arbitrary kinematic loading at the other node, Figure 1. In the standard FE
formulation the 2D element stiffness matrix,)(ntK , of elastic rod at nth time step is
given as (see e.g.[3]):

Eq. 3
44444 344444 2144 344 2143421

][

22

22

3

][

2

][
21

32
23

2
3

00
01

)(

N

yxyx

yxyx

N

xy

yx

K

n uuuu
uuuu

L
AE

uu
uu

L
AE

L
AEtK













+
+

+







+







=

where A is the cross-sectional area of the rod, L is initial length, yx uandu are
components of the displacement vector, u , in the total Lagrange description and E is
the Young modulus. Commonly the three matrices in Eq. 3 are referred to as
infinitesimal displacements stiffness matrix, K , and linear and quadratic contribution
matrices,][][21 NandN , respectively. The stiffness matrix in Eq. 3 is worked out for
moderate nominal strains,)1(2 <<xx εε and arbitrary rotations. This matrix can be
further generalized to the case of large strains by using the basic relations between
components of Green-Lagrange, xe , and nominal strain, xε , tensors, [5].

Eq. 4 









+++=

+
=−−= 2

2

2

2

2

2

2
2
1 2

1121
L
u

L
u

L
u

L
uewhereeande zyxx

x
xx

x
xxx εε

εε

The resulting form of the stiffness matrix is then

Eq. 5
















++
++

++++

++
=

2
2
12

2
1

2
1

2
2
12

2
1

2
1

2
1

2
1

2
1

2
12

2
1

2
3

2
1

0
0

1

21)1(
1)(

yzzxz

zyyxy

zxzyxyxx

xx
n

uuuuu
uuuuu

uuuuuuuu

L
AE

e
tK

ε

The matrix in Eq. 5 is singular, ill conditioned for large rotations and CPU time
expensive. The complex form of the matrix results from the derivation technique
involving directly constitutive relations of the rod material (in this case simple elastic
material). The resulting definition of the stiffness matrix is also an example of a poor
design of computer code based on the Object Oriented Programming paradigm as it
involvers, at one programming level, all detailed information on the material, the
mathematical model of the element and contribution of the element to the response of
entire computational model. This subject will be further discussed in the next section.
The stiffness matrix in Eq. 5 is given for the total Lagrangian formulation. Significant
simplification of the resulting expression is obtained for co-rotational formulation
when the axial force in the rod,)(ntP , is defined in the current rather then initial
configuration. The result is, [5]:

Eq. 6



















 +

=
100
010

00)(

)(
)()(

x

x

n

n
n

u
uL

tL
tPtK

 4

Although the programming structure of the matrix in Eq. 6 is much better it is still
singular at 0=xu and requires separate routine for this particular configuration. The
above example illustrates only a small fraction of the implementation problems
originating from the stiffness matrix formulation. Therefore application of the
‘stiffness method’ to the crash simulation is marginal.

Most of the difficulties encountered in the ‘stiffness matrix method’ disappear when
internal nodal forces are kept constant at each iteration step, Eq. 2b. In this case local
and global stiffness matrices are obsolete. Furthermore, in the case of diagonal form
of the mass matrix, M , in Eq. 2b the governing momentum equations are decoupled
and solution to the problem is obtained without solving any algebraic equations3.
This simple and at the same time ingenious idea is due to Belytschko who formulated
the corresponding theory in early 1970s. Belytschko’s method is now referred to as
the element-by-element technique. This technique linked with the central difference
method forms the basis of most commercially successful codes for crash simulation.
In FE codes solution to the momentum equations, Eq. 2b, is build and solved
following the standard discretize/approximate/iterate paradigm. This method allows
for effective implementation of standardized solution routines involving large number
of finite elements of the same class, e.g. 105 elements. At the same time the
standardization of the matrix method makes it difficult to implement solutions to more
complex elements that require dedicated subroutines or subprograms to compute
internal nodal forces at every iteration step (e.g. Super Elements). Furthermore, the
global formulation given by Eq. 2b is still not convenient for OOP implementation.
Generalization of the element-by–element technique to the element-by–element/node-
by-node method is briefly outlined in the next section.

The node-by-node/element-by-element method
Object Oriented Programming technique is a relatively new approach to the
implementation of complex models. Despite of the widespread of OO programming
techniques in the computer information industry they have received relatively little
attention in implementation of algorithm relevant to structural mechanic.
Fundamental attribute of the OOP is the possibility of implementation of ideas or
concepts (notions) in separate programming entities referred to as objects4. Generally,
an object embodies both specific data and the functions that manipulate it, [7]. The
above general definition of an object is rather vague, however, in the area of structural
engineering definition of objects such as ‘vector’, ‘tensor’, ‘coordinate system’ or
‘node’ is intuitive and quite obvious to an engineer. In the OOF it is important to
realize what a given method does (or how it works in general terms). Once this
objective is achieved the precise definition of how it does it at various levels of
generality (referred to as levels of abstraction in OOP jargon) is a relatively easy task.
Accordingly the exposition of the present formulation starts from the most general
ideas (high level of abstraction) and concludes at precise definition of most important
objects. The exposition of the method is limited to the ‘force method’, Eq. 2b, and

3 Conditional stability of the discussed explicit integration method constitutes a severe limitation,
which can be devastating to the simulation results in the case of time increments larger then the critical
time step.
4 In OOP stringent distinction is made between ‘class’ and ‘object’ concepts. Class is a segment of
code that defines properties and behaviors of objects. Instant(s) of a class created in computer memory
is referred to as object(s). This distinction is immaterial for the present descriptive presentation of the
method.

 5

explicit integration scheme based on the central difference algorithm. The
generalization to the case of ‘stiffness method’ and other time stepping routines is a
subject of forthcoming publications.

Basic paradigm of the FE method
The leading idea of the FE formulation is the partition of a structure (or solid) into
‘elements’ of finite size; as shown schematically in Figure 2a and b.

F

M

 a). b). c). d).
Figure 2 Schematic illustration of the basic paradigm of the Finite Element Method.

The dynamic response of each Element is then ‘granulated’ at discrete points referred
to as ‘nodes’, Figure 2c. The forces defined at the element’s nodes must guarantee the
internal equilibrium of an element. The inertia properties of each element are
represented by ‘lumped’ masses or continuous inertia (inertia tensor) distributed at
element’s nodes. At this point the dynamic equilibrium (discrete momentum
equations) of the discretized model is represented by a set of nodes subjected to the
action of a vector sum of forces exerted by elements connected to a given node and
discrete external forces applied to the node itself, Figure 2d. In the explicit scheme
both forces exerted at a node as well as inertia properties are kept constant at each
time step. Consequently, at all iteration steps the problem is reduced to the dynamics
of a set of uncoupled material points (rigid bodies). Integration of corresponding
momentum equations is done in a node-by-node manner and renders incremental
displacements and velocities of each node. These kinematic quantities are used, in
turn, to update the nodal forces and inertia properties of corresponding elements. The
update procedure is done element-by-element and involves elements only. The basic
outcomes of the above general description of the FE method are:

1. Two basic types of objects: Nodes and Elements are used to define the FE
model.

2. Two types of operations: time integration and update of elements is performed
in turn on separate sets of nodes and elements, respectively, at each iteration
step.

3. The exchange of information between nodes and elements is done following
each of the above operations.

The second conclusion is especially important for the further development of the
present method. It indicates that operations on the node set (incremental solution to
momentum equations) can be effectively separated from the operations on the set of
elements (elements update). In other words the global equilibrium algorithm can be
implemented without direct reference to the specific type of an element. This in turn
guarantees an open architecture of the code: the developer or the user of the code can
define various elements without a direct interaction with the global equilibrium
algorithm and adopted incremental solution procedure.
Further on the first conclusion shows that the whole algorithm can be implemented
without ‘global matrix’ of any kind. In fact there is no need to define any matrix in

 6

the present formulation. Finally, a number of time integration routines can be defined
on the set of nodes without direct manipulation of the node’s code.

The node and the interface objects
The broad notion of the node object introduced in the previous section is not precise
enough for detailed description in terms of computational mechanics. Closer
examination of the functionality of a node shows that ‘nodes’ defined on elements and
‘nodes’ at which various elements meet together constitute two different objects. This
is explained on the example of two beam elements meeting at a single node, Figure 3.

 Node Object

Interface Objects

Element Object Element ObjectNode Object

Interface Objects

Node Object

Interface Objects

Element ObjectElement Object Element ObjectElement Object
 (a) (b)

Figure 3 Connection of two beam elements at a single node (a). The concept of the interface
objects (b).

Commonly the cross-sectional forces in a beam are given at the centroid. Resulting
forces and moments are defined by summing contributions parallel and perpendicular
to the cross-sectional plane (e.g. axial and shear forces or bending and torsion
moments). The object capable of handling this functionality must have an orientation
in space. Such an object is referred to as ‘the interface’ or ‘the interface object’.
Orientation of the interface is defined by the triplet of unit base vectors },,{ γβα rrr , two
perpendicular unit base vectors βα

rr and define the cross-sectional plane while the
third vector βαγ

rrr ×= defines normal to the plane. Three coordinates of each base
vector define position of that vector in the node coordinate system. The orientation
object implements the idea of the orthogonal Cartesian reference system in the
corotational formulation of classical continuum mechanics.
Similarly like in the case of interface spatial position and orientation of a node is
defined by a separate orientation object, },,{ kji

rrr
, where coordinates of consecutive

unit base vectors are given in the global (reference) coordinate system. Interfaces of
all elements meeting at a given node are rigidly attached to the node throughout the
entire calculation process so that motion of the node uniquely defines corresponding
motions of all interfaces connected to that node.

Transformation of vectors between node and interface
Transformation of vectors defined in the node or interface frames is given by simple
multiplication of vectors by scalars or projections of a vector onto the base vectors.
The resulting operations are analogous to standard transformations defined by means
of second order tensors. For example if],,[321 vvvv is the representation of a vector in
the interface frame its representation v~ in the node frame is defined by the scatter
function:

Eq. 7
kvvvjvvvivvv

vvvnodevscaterv
rrr

rrr

)()()(

),(::~

333231232221131211

321

γβαγβαγβα

γβα

++++++++

=++==

 7

The ‘scope resolution operator’, ::, in front of the function name emphasizes that
syntax of the function call in Eq. 7 is exactly the same as in an actual source code (in
C++ programming language). The function scatter takes two arguments: the vector
and pointer to the orientation object to which the vector must be transformed. This
simple example illustrates how easy functions defined on various objects are
constructed in OO languages. On the contrary if vector]~,~,~[~

321 wwww is defined in the
node frame the representation, w , in the interface frame is given by the gather
function:
Eq. 8 k)kw(j)jw(i)iw(wgatherw

rrrrrr
⋅+⋅+⋅=≡ ~~~interface),~(::

Momentum equations of a node object
The reduction of interface(s) forces and moments to the node frame is done in a usual
way and results in the well-known equations of momentum and moment of
momentum [8] [9]:

Eq. 9
)(c

nn
c

no

o
c

nn

mmFvm
vmMK

ρωωρω
ρ

××−×−=

×−=
&&

&&
.

In Eq. 9 MandF are the resulting forces and moments exerted on a node by
connected elements and applied loadings, m is the total resulting mass, ω is the
instantaneous angular velocity of the node, K stands for the moment of momentum
and cρ is the position vector of the center of gravity of the node. The superscript ‘o’
indicates origin of the node frame while superscript ‘n’ indicates that given quantity is
defined in the node coordinate system. If origin of the node coincides with the center
of gravity Eq. 9 are reduced to the familiar Newton-Euler form

Eq. 10
nnnnnn

c

JMJ
Fvm

ωωω ×−=

=
&

&

where nJ is the tensor of inertia and cv& is the acceleration of the center of gravity of a
node in the global frame. It should be emphasized that in the Newton-Euler equations
dynamics of translatory motion is given in global frame while the rotary motion is
described in node (local) frame. In addition ω is a pseudo coordinate and in general
its integral does not have physical meaning.

Rotations and translations of the node object
Calculation of finite rotations constitutes perhaps the major difficulty in
implementation of codes for large rotations/large strains models. The difficulty stems
form the fact that finite rotation around a stationary spatial axis is inherently a four-
parameter object (quaternion), which in the classic matrix formulation is represented
by a three-parameter set like Euler angles or parameters, Bryant/Cardan angles etc.
Such a three-parameter representation has always singularities at discrete points that
lead to computational problems. On the other hand, velocities of rotation or
incremental rotations are true vector quantities that fit well into a three-parameter
matrix algorithm. The problem is easily solved in the OOF, which takes advantage of
a strict separation of algorithms for node’s incremental mechanics, described by
vector quantities, and spatial update of node’s configuration based on the exact Euler
vector formula for finite rotations. The details of the update procedure are as follows:
the motion of a node is computed incrementally. After each iteration step the

 8

following quantities are given: position of the node origin, 1−nr , at time step 1−n the
corresponding increment of the position vector, r∆ , and an average angular velocity
of node nω at a given time increment. Computation of the position vector is trivial

Eq. 11 rrr nn ∆+= −1 .

Update of the orientation is done as follows: the angular velocity vector nω
transformed to the global frame defines the (unit) vector of an instantaneous axis of
rotation, a , of the node. The incremental rotation angle around this axis is

tnn ∆=∆ ωθ . So that the incremental rotations of node base vectors },,{ kji
rrr

 are
given as

Eq. 12

nnn

nnnnnn

nnnnnn

n

jik

jaajajj
iaaiaii

v
va

globalscatterv

rrr

rrrr

rrrr

×=

∆−××+∆×+=

∆−××+∆×+=

=

=

−−−

−−−

)]cos(1)][([2)sin()(

)]cos(1)][([2)sin()(

),(::

111

111

θθ
θθ

ω

where v is an auxiliary vector and a is an unit vector along instantaneous axis of
rotation. It is interesting to note that in a properly designed OO code the
implementation of the Euler formula in Eq. 12 requires virtually a single line of code!

The Element object
The general term ‘element object’ refers to any finite part of a solid or structure. It is
assumed that the response of an element is uniquely defined by the kinematics of
interfaces defined on that element. For example, in the case of a beam element in
Figure 4 the dynamic response of the ‘element’ is uniquely defined by the kinematics
of two interfaces regardless of the employed beam theory.

z

y
x

z

y
x

z

y
x

z

y
x z

y
x

z

y
x

z

y
x

z

y
x

z

y
x

z

y
x

z

y
x

z

y
x

z

y
x

z

y
x

z

y
x

End interface Start interface

Figure 4 The internal mechanics of a beam element is uniquely defined by the kinematics of two

interfaces.

In the present formulation elements are divided into two basic groups: Finite Elements
and Macro Elements (ME). The division is functional rather then formal. The name
Finite Element applies to all classic elements that are defined and solved by using
standard discretize/approximate FEM paradigm. In the present formulation these
elements can be implemented directly as ‘encapsulated objects’ with only minor re-
coding of standard FE algorithm. All remaining elements are referred to as Macro

 9

Elements and can be defined by an algorithm, expression, separate program and/or
any rule that can be cast into the form of a computer code.

Multi-model representation of the Element
Introduction of the interface object allows for an effective separation of the ‘Element
Level’ and ‘Node Level’ in the formulation and implementation of the discrete
modeling method. This in turn paves the way to the concept of multi-model
representation of an element in the simulation model. The leading idea of the multi-
model element concept is illustrated in Figure 5 on the example of a typical thin-
walled prismatic member of a car body.








+ =

t H M
 c

t H
M

H
HP o

o
eff

m

π π
δ

4
2

2
)(

‘Conventional FE models.

Experimental
characteristics,

•Analytical
solutions,

•Super Elements, 




































+ =

t H M
 c

t H
M

H
HP o

o
eff

m

π π
δ

4
2

2
)(

‘Conventional FE models.

Experimental
characteristics,

•Analytical
solutions,

•Super Elements, 





























z

y
x

z

y
x

z

y
x

z

y
x

Figure 5 Schematic illustration of the multi-model representation of an element. Since elements are

effectively separated form node objects implementation of ‘multi-model element’ is done in
a natural way by using polymorphism, an elementary mechanisms of the OOP. In the
present example the prismatic section could be discretized into a single elastic beam,
Superbeam Elements or standard quadrilateral elements. Other discretization methods
could involve experimental databases, analytical solutions, codes of practice etc.

Depending on the type of the problem and ‘resolution’ of the simulation model the
beam element corresponds to elastic beam(s), Superbeam Element(s), experimental
stiffness and/or crushing characteristic or a detailed FE shell model. Since all these
beam elements ‘communicate’ with the corresponding nodes via interface objects
particulars of the element implementation are not ‘visible’ at the node level and
consequently do not affect neither the assembling routine of the entire model nor the
selected time stepping routine.
For the first time the multi-model representation of Macro Element was successfully
implemented in the software DAMAGE, [11], for simulation of ship collisions and
grounding. In DAMAGE all typical variations of structural component(s) (or
substructures) can be defined simultaneously in the model database and
activated/deactivated by the user by a single click of the mouse. Such an organization
of the software allows for an easy verification of various design variants as well as for
fast assembling of computational models composed of typical components.

The iterator object
The introduction of the interface object effectively splits the solution to the discrete
model into operations on two separate sets: the set of ‘elements’ and the set of
‘nodes’, Figure 6.

 10

The global equilibrium of the system is governed by the equilibrium of nodes.
Consequently the time stepping routines derived from an abstract class ‘Iterators’ are
defined on the set of nodes of a given model. The iterator class does not have any
knowledge as to the number or type of elements connected to contributing nodes. The
second set is the set of elements derived form a single abstract class ‘Element’. The
operations defined on the set of elements involve constitutive update, contact-impact
algorithms etc. Similarly like in the case of nodes the element objects do not have any
knowledge on the global properties of the model and communicate only with nodes
via interface objects.
The general concept of the code based on the present approach is shown in Figure 6.
At the time step i the kinematic variables, calculated at the preceding step, are defined
for each node of the system and transformed to all interfaces attached to that element.

Interfaces List
#1

#2

………….

Set of Nodes

………

Interfaces

Interfaces List
#1

#2

………….

Set of ElementsKinematics (i+1)

Forces and inertia (i) Kinematics (i)

Forces and inertia (i+1)

Contact/Impact
processor(s):

Contact detection
tool

TOOLS:Iterators:
•Explicit

•Newmark

•………

Interfaces List
#1

#2

………….

Set of Nodes

Interfaces List
#1

#2

………….

Interfaces List
#1

#2

………….

Interfaces List
#1

#2

………….

Set of Nodes

………

Interfaces

………………………

Interfaces

Interfaces List
#1

#2

………….

Set of Elements

Interfaces List
#1

#2

………….

Set of Elements

Interfaces List
#1

#2

………….

Interfaces List
#1

#2

………….

Interfaces List
#1

#2

………….

Set of ElementsKinematics (i+1)Kinematics (i+1)

Forces and inertia (i)Forces and inertia (i) Kinematics (i)Kinematics (i)

Forces and inertia (i+1)Forces and inertia (i+1)

Contact/Impact
processor(s):

Contact detection
tool

TOOLS:
Contact/Impact

processor(s):
Contact detection

tool

TOOLS:Iterators:
•Explicit

•Newmark

•………

Iterators:
•Explicit

•Newmark

•………

Figure 6 Schematic representation of the iteration process based on the present node-by-node

element-by-element algorithm present implementation of FEM based on three basic objects:
node, interface and element.

This forms the basis for the constitutive update routine in which kinematic data are
read-in by each contributing element. On that basis the resulting internal forces and
inertia properties are defined on all interfaces attached to given element. On the i+1
step inertia characteristics, forces and moments are determined in each node and the
next iteration step is performed.
The detailed flowchart for the explicit time integration scheme is given in Table 1 and
Table 2. The flowchart follows the standard explicit procedure, see e.g. [1] and [2].
The only difference is that calculation routines are rigorously split into operations on
the set of nodes (global equilibrium) and the set of elements (constitutive update).

Table 1 Initialization of the explicit t time stepping routine

Elements set Nodes set

Calculate initial inertia properties em and
eJ and initialize interfaces.

Set initial velocities 00 ωandr& and
initialize inertia objects Jandm .

 11

Table 2 Main iteration loop of the explicit time stepping routine

Operations on nodes

1. Get forces and moments from interfaces and calculate reduced forces and
moments nn MF , (::scatter function, Eq. 7).

2. Compute accelerations: nn Fmr 1−=&& and),(nnn MFL=ω& , Eq. 10

3. Update nodal velocities:






+∆=

+∆=
+

+

002/1

002/1

2/1
r2/1
ωωω t

trr
n

n

&

&&&&
 if n=0 and







+∆=

+∆=
−+

+

2/12/1

1/2-n2/1 r
nnn

nn

t
trr

ωωω &

&&&&
 when n >0

4. Enforce essential boundary conditions for predefined set of nodes:
)()(2/12/1 2/12/1 ++ ==

++ n
b

n
gb tfandtfr

nn

ω&
5. Update nodal displacements and orientation: Eq. 11and Eq. 12

6. Update kinematic variables at connected interfaces (::gather function, Eq. 8)

7. Write output data for nodes

Operations on elements

1. Get kinematic variables from interfaces connected to the element
2. Update the state of elements
3. Compute measures of deformation and resulting forces. Compute inertia

properties (typically once per 102-103 iteration steps)
4. Set forces and inertia on connected interfaces.
5. Write output data for elements
6. Go to the next iteration step

Example of implementation
The Object Oriented Formulation introduced in this paper is implemented in the
dedicated program for three-dimensional dynamic analysis of thin-walled space
frames. The basic building block of the program is the Superbeam Element (SBE)
developed by the present author on the basis of earlier research on the large plastic
deformations of plastic shells and the concept of the Superfolding Element, [11]-[15].
The Superbeam Element concept is explained in Figure 7. The smallest size of the
Superbeam is defined by the length H2 of the plastic folding wave in prismatic
member. For convenience such an elementary Superbeam is referred to as a
deformable cell. Longer Superbeam Elements are defined by connecting together two
deformable cells by an elastic/plastic beam. In this implementation deformable cells
can be viewed as two generalized plastic hinges at both ends of the elastic/plastic
beam. The basic characteristics of the crushing response of each deformable cell
under arbitrary combined loading of axial and shear forces and bending and twist
moments is calculated at the pre-processing level by a separate program – Superbeam
Constructor.

 12

Deformable cell

2H 2H beam element

Deformable
cells

Node end Node start

Superbeam Element

Figure 7 The Superbeam Element modeling concept. Crushing response of a single layer of folds is
described by the deformable cell element of the height equal to the length of the plastic
folding wave, 2H. Two deformable cells separated by elastic/plastic core form the longer
version of Superbeam element.

Introduction of the intermediate beam between two deformable cells to form a single
general Superbeam Element adds the necessary modeling flexibility in the case of
space frames made of long thin-walled members, Figure 8.

Figure 8 The 10 m/s offset crash response of a buggy frame discretized into 91 Superbeam Elements.

CPU time: 6 seconds on 1.7 GHz laptop.

Performances of the new software are illustrated on two examples of real world thin-
walled automotive components.

Quasi static crushing of ‘S’ frames
Three types of ‘S’ frames in Figure 9, with offset angles of 15, 30 and 45 degrees,
respectively were tested quasi-statically and dynamically by Ohkami at all [16]. The
quasi-static tests were performed with constant crush velocity of 10 – 50 mm/min
with both sides of the specimens fixed for rotation. The crushing characteristics for
15 and 30 degrees frames are compared with the experimental data in Figure 10. It
transpires form the above comparison that both pre- as well as post-collapse response
of the frame is predicted with very good accuracy. The experimentally recorded peak
forces are 27.7 [kN] and 18.1 [kN] for 15 and 30 degrees frames respectively. These
should be contrasted with calculated forces of 27.5 [kN] and 19.1 [kN], respectively.

 13

STATICSTATIC

Figure 9 Experimental setup of Ohkami experiment.

In both cases the ‘S’ frames were discretized into only 3 Superbeam elements.
Consequently the CPU time for the whole quasi-static simulation takes only few
dozen of seconds on an average PC despite the fact that quasi-static response of both
frames is calculated here by using the conditionally stable explicit routine that
requires very small time step.

0

5

10

15

20

25

30

0 50 100 150 200
Shortening [mm]

C
ru

sh
in

g
fo

rc
e

[k
N

]

Experiment
Calculations

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300
Shortening [mm]

C
ru

sh
in

g
fo

rc
e

[k
N

]

Experiment
Calculations

2 105 steps CPU – 17 seconds 3 105 steps CPU – 25 seconds

Figure 10 Experimental and numerical crushing characteristics of ‘S’ frames with 15 and 30 degrees
offset angle.

The experimentally recorded and calculated deformed shapes of both frames at 100
[mm] crushing are compared in Figure 11 showing again very good agreement.

Figure 11 Undeformed and deformed shapes of the ‘S’ frame predicted by the FE and Superbeam
Element models. Deformation corresponds to 100 millimeters of crushing distance.

A specific feature of the Superbeam Element is a very weak influence of the
discretization density onto the simulation results. Illustration of this statement is
given in Figure 12. Two graphs in this figure correspond to the crushing response of
S frame discretized into 3 and 16 Superbeam Elements, respectively. The later model
corresponds to the densest discretization permitted by the Superbeam method where
each element has the length of a representative plastic fold. It is evident from the
graphs in Figure 12 that radical change in the number of discretizing elements does
not affect crushing response of the model. This result is explained by the fact that the
cross-section collapses at the same locations in both models so that introduction of
additional elements did not increase number of plastic hinges in the model.

 14

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000
time [ms]

Cr
us
hi
ng
for
ce
[k
N]

Figure 12 Crushing response of S frame discretized into 3 and 16 Superbeams. The density of

discretization does not affect the accuracy of calculations.

Dynamic response of rear end frame
The results on dynamic and quasi-static crushing of a rear frame of a passenger car are
reported by Takada and Abramowicz [17]. The corresponding FE and Superbeam
computational models are shown in Figure 13. The FE model is made of over 5000
shell elements in contrast to the Superbeam model that contains only 6 elements. The
frame is fixed at the wider ends and subjected to low rate kinematic loading of
1.2 [m/s] at the opposite end.

Fixed

V = 1200mm/sec

Fixed

V = 1200mm/sec

Fixed

V = 1200mm/sec

Fixed

V = 1200mm/sec

Figure 13 Discretization of a rear frame component into Superbeam and classic FE elements. The

Superbeam model consists of 6 elements while FE model takes over 5000 shell elements.

In engineering analysis of frames and longitudinals of a car body an important design
feature is the location of local collapse spots where plastic hinges are created. Frames
and longitudinals are designed to bend about these hinges in a way that prevents
penetration of deformed segments into the passenger compartment.

Collapse points

Figure 14 Top and side view of the location of potential plastic hinges in FE and Superbeam models.

Results of such an analysis is shown in Figure 14 for both FE and Superbeam models.
It is seen that the Superbeam model reproduces location of plastic collapse of sections

 15

with a remarkable accuracy. It should also be noted that FE analysis took over 22
hours on the CRAY T90 supercomputer. This should be contrasted with the
Superbeam analysis that took 68 seconds on a 0.5 GHz laptop.

Conclusions
This paper gives a concise description of the object-oriented formulation and
implementation of the dynamic algorithm for arbitrary mechanical system that can be
modeled by means of the ‘node’/‘element’ paradigm. The major benefit of the new
formulation is the possibility of integration in a single computer program elements
formulated at various levels of modeling accuracy and methodology of formulation.
The new formulation and programming concept is validated for Superbeam Elements
that model large elastic plastic deformations of thin walled prismatic beams. The
successful implementation of this particular macro-element justifies further
development of the program to include other types of macro-elements as well as
classic FE elements.

 16

References

[1] Belytschko T Liu W K and Moran B (2000) Nonlinear Finite Elements for Continua and

Structures John Wiley.

[2] Belytshko T and Hughes TJR (1983) Computational Methods for Transient Analysis North-
Holland, Amsterdam.

[3] Cook RD Malkus DS and Plesha ME (1989) Concepts and Applications of Finite Element
Analysis, John Wiley.

[4] Zienkiewicz OE and Taylor RL (2000) The Finite Element Method (Vol1. The Basis) Butterworth-
Heinemann.

[5] Abramowicz W Limitations of the matrix method in the FEM formulation for large deformations
and strains (2001) Impact Design Europe internal report 1/2001.

[6] Abramowicz W Object Oriented, Reduced Operation Set Formulation of the Multi-Body Macro
and Finite Element method (2001) Impact Design Europe internal report 2/2001.

[7] MSDN (The Microsoft Developer Network), © 1991-2000 Microsoft Corporation,
http://msdn.microsoft.com/.

[8] Rosenberg M R (1977) Analytical Dynamics of Discrete Systems Plenum Press.

[9] Blajer W (1998) Methods of Multibody Dynamics, Monographs of Radom Technical University (in
polish)

[10] Abramowicz W and Sinmao M (1999) User’s Manual and Modeling Guide for the Program
DAMAGE, v. 4.0, Joint MIT-Industry Program on Tanker Safety, report No. 66, Department
of Ocean Engineering, MIT Cambridge MA.

[11] Abramowicz W. (2001). Macro element method on crashworthiness of Vehicles in
Crashworthiness – energy management and occupant protection (Ambrosio J. Editor)
SpringerWienNewYork.

[12] Abramowicz W. (1996). Extremal Paths in Progressive Plasticity, Int. J. Impact Engng, 18:7-8,
753-764.

[13] Abramowicz W. and Wierzbicki T. (1989). Axial crushing of multi-corner sheet metal columns J.
App. Mech., 56:1, 113-120.

[14] Wierzbicki T.and Abramowicz, W. (1987 - 1989). The Manual of Crashworthiness Engineering
Vol. I - IV, Center for Transportation Studies, Massachusetts Institute of Technology.

[15] Crash Cad Manuals - Superbeam Constructor, (1998) Impact Design Boston MA.

[16] Ohkami, Y., et al Collapse of Thin Walled Curved Beam with Closed Hat Section – Part 1: Study
on Collapse Characteristic, SAE 900560.

[17].. Takada K., Abramowicz W., Novel Formulation of the 3D Large Deformation Beam Element for
Dynamic Crash Analysis, (in Japanese), JSAE papers 2002 – in print.

http://msdn.microsoft.com/

	An alternative formulation of the FE method for arbitrary discrete/continuous models
	Summary
	Introduction
	Preliminaries
	The node-by-node/element-by-element method
	Basic paradigm of the FE method

	The node and the interface objects
	Transformation of vectors between node and interface
	Momentum equations of a node object
	Rotations and translations of the node object

	The Element object
	Multi-model representation of the Element

	The iterator object
	Example of implementation
	Quasi static crushing of ‘S’ frames
	Dynamic response of rear end frame

	Conclusions
	References

